主题学习性倾向的心得体会总结(4篇)
我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。好的心得体会对于我们的帮助很大,所以我们要好好写一篇心得体会下面我帮大家找寻并整理了一些优秀的心得体会范文,我们一起来了解一下吧。
主题学习性倾向的心得体会总结一
求知欲是人们思考研究问题的内在动力,学生的求知欲越高,他的主动探索精神越强,就能主动积极进行思维,去寻找问题的答案。教师在教学中可采用引趣、激疑、悬念、讨论等多种途径,活跃课堂气氛,调动学生的学习热情和求知欲望,以帮助学生走出思维低谷。如讲黄金分割时,介绍了华罗庚教授的“优选法”以及“优选法”在工农业生产、科学实验中实现最优化目标的巨大作用,并介绍它在建筑、艺术、语言、生物等方面的奇巧应用,使学生惊叹数学无所不在,神通广大,提高了学生的求知欲望,使他们感到应极快掌握这一知识。讲授新课之前,先设置一个疑团,让学生产生悬念,急于要了解问题的结果,而使学生求知欲望大增。例如在讲授排列应用题时,我们的开场白是:现在我手上有6本不同的书,分给某6位同学,每人一本,共有多少种不同的分法?于是同学们议论纷纷,有的同学甚至拿着六本不同的书在试着分法,然而怎么也分不清。这时教师抓住这一有利时机指出:这一问题是这节课要解决的问题,只要掌握了解题方法问题很容易解决。这样尽管这节课的内容是一些繁杂枯燥的计算,学生在课堂上却是兴趣盎然。青少年学生求知欲望强,敢说,敢想,喜欢发表自己的意见,组织讨论能很好地发挥这种心理优势,有一次在讲棱锥的时候,我出了这样一道选择题:“已知四棱锥的四个侧面都是正三角形,则底面是a.矩形;b.菱形;c.正方形;d.平行四边形。”然后让同学们思考和讨论,教室里的气氛一下活跃了,争论的焦点集中在是正方形还是菱形,两种意见争持不下,这时坐在后面的一个男同学用纸织了一个模型,送到了讲台上,这个模型说明了菱形的不可能性,因为如果是菱形,则底面不可能放在桌上,即底面四顶点不在同一平面,坚持正方形的同学兴奋极了。最后教师充分肯定了这位同学的创造精神并理论上证明了这一结论,使另一部分同学心服口服。
实践证明在遵循教学规律的基础上,采用生动活泼,富有启发、探索、创新的教学方法,充分激发学生的求知欲,培养学生的学习兴趣,是提高课堂教学效果和培养学生研究能力的重要途径。
2.数学开放题与数学研究性学习
数学开放题体现数学研究的思想方法,解答过程是探究的过程,数学开放题体现数学问题的形成过程,体现解答对象的实际状态,数学开放题有利于为学生个别探索和准确认识自己提供时空,便于因材施教,可以用来培养学生思维的灵活性和发散性,使学生体会学习数学的成功感,使学生体验到数学的美感。因此数学开放题用于学生研究性学习应是十分有意义的。
开放题是数学教学中的一种新题型,它是相对于传统的封闭题而言的。开放题的核心是培养学生的创造意识和创造能力,激发学生独立思考和创新的意识,这是一种新的教育理念的具体体现。为了使数学适应时代的需要,我们选择了数学开放题作为一个切入口,开放题的引入,促进了数学教育的开放化和个性化,从发现问题和解决问题中培养学生的创新精神和实践能力。关于开放题目前尚无确切的定论,通常是改变命题结构,改变设问方式,增强问题的探索性以及解决问题过程中的多角度思考,对命题赋予新的解释进而形成和发现新的问题。近两年高考题中也出现了开放题的“影子”,如1998年第(19)题:“关于函数f(x)=4sin(2x π/3)(x r),有下列命题:由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;②y=f(x)的表达式可改写为y=4cos(2x-π/6):y=f(x)的图象关于点(-π/6,0)对称;④y=f(x)的图象关于直线x=-π/6对称。其中正确的命题是──(注:把你认为正确的命题的序号都填上)”显然《高中代数》上册第184页例4“作函数y=3sin(2x π/3)的简图。”可作为其原型。学生如果明白这些道理就会产生对问题开放的需求,逐步形成自觉的开放意识。又如20xx年理19文20题 函数单调性的参数取值范围问题(既有条件开放又有结论的开放,条件上,对 ,是选择 ,还是选择 ?选择前者则得 ,以后的道路荆棘丛生,而选择后者则有 ,以后的道路一片光明;结论开放体现在结论分为两段,一段上可使函数单调,另一段上不单调,且证明不单调的方法是寻找反例);
从数学考试中引进一定的结合现实背景的问题和开放性问题,已引起了广大数学教育工作者的极大关注,开放题的研究已成为数学教育的一个热点。
有了开放的意识,加上方法指导,开放才会成为可能。开放问题的构建主要从两个方面进行,其一是问题本身的开放而获得新问题,其二是问题解法的开放而获得新思路。
如“已知 ,并且 求证 (《高中代数》下册第12页例7)”除教材介绍的方法外,根据目标的结构特征,改变一下考察问题的角度,或同时对目标的结构作些调整、重新组合,可获得如下思路:两点(b,a)、(-m,-m)的连线的斜率大于两点(b,a)、(0,0)的连线的斜率;b个单位溶液中有a个单位溶质,其浓度小于加入m个单位溶质后的浓度;在数轴上的原点和坐标为1的点处,分别放置质量为m、a的质点时质点系的重心,位于分别放置质量为m、b的质点时质点系的重心的左侧等。
又如,用实际例子说明
所表示的意义给变量赋予不同的内涵,就可得出函数不同的解释,我们从物理和经济两个角度出发给出实例。
(1)x表示时间(单位:s),y表示速度(单位:m/s),开始计时后质点以10/s的初速度作匀加速运动,加速度为2m/s2,5秒钟后质点以20/s的速度作匀速运动,10秒钟后质点以-2m/s2的加速度作匀减速运动,直到质点运动到20秒末停下。
(2)季节性服饰在当季即将到来之时,价格呈上升趋势,设某服饰开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售,10周后当季即将过去,平均每周削价2元,直到20周末该服饰不再销售。
函数概念的形成,一般是从
本文共计16613字,当前仅展示3000字,阅读全文请点下方按钮下载>>>
主题学习性倾向的心得体会总结(4篇)
本文2024-01-31 23:43:38发表“工作总结”栏目。
本文链接:https://www.neimou.com/article/411405.html