有理数的加法
有理数的加法(精选15篇)
有理数的加法 篇1
教学案例一、设计思路借助生活中熟悉的例子“数轴”比赛中的加减分,使学生着先理解(+1)+(-1)=0和(-1)+(+1)=0,然后利用正负抵消的思路,讨论整理加法的几种情形,并借助数轴加深理解后由特例归纳出法则。二、教学目标 1.经历探索有理数加法法则和运算法则和运算律的过程理解法则和运算律。2.能熟练进行整理加法运算,并能用运算律简化运算。三、教学重点和难点重点:能熟练的进行整数加法运算法则。难点:理解法则和运算律。四、教学过程 1、创设情境,引入课题(1)举出比赛中加减计分的例子板书:有理数加法(2)师生互动,探索规律出示题目:31+76+69问题:小学的加法交换律的内容,能否利用它来解答有理数加法的题目呢?出示例2:31+(-28)+28+29请两位同学上黑板,一位同学用加法法则计算,一位同学用加法交换律计算,其余学生自己动手解答,互相交流。2、总结规律,得出结论运用加法结合律可以使有理数运算简化,由此得出,小学的加法结合律、交换律对于有理数同样是适用的。3、 示例3、学生板演,强调使用交换律、结合律4、 课堂练习: ①(-25)+(-7)+25 ②2+[(-3)+(-8)]③43+(-77)+27+(-43)由学生完成,教师指导5、 课堂小结①这节课你学会了一种什么运算?②你有何体会?6、 作业 :五、教学反思:这节课我为学生创造了思考、交流的机会,使学生合作交流。但计算中个别学生仍有漏符号的问题。
有理数的加法 篇2
教学目标1,经历有理数加法运算律的探索过程,理解有理数加法的运算律.2,能用运算律简化有理数加法的运算.3,使学生逐渐养成,“算必讲理”的习惯,培养学生初步的推理能力与表达能力.
教学难点合理运用运算律
知识重点加法交换律和结合律,及其合理、灵活的运用
教学过程(师生活动)
设计理念
设置情境
引入课题回顾复习:小学时已学过的加法运算律有哪几条?学生回答后教师接着问:你能用自己的语言或举例子来说明一下加法的交换律与结合律吗?提出问题:这些运算律在有理数加法中适用吗?这就是这节课我们要研究的课题.
分析问题
探究新知探讨加法运算律在有理数范围内是否适用. 1,有理数加法交换律的学习. 问题1:我们如何知道加法交换律在有理数范围内是否适用?(先由教师举一些实际例子来说明,然后鼓励学生举不同的数来验证) 问题2:我们如何用语言来叙述有理数加法的交换律呢?(这个问题请学生回答,并互相补充) 教师归纳后板书:“有理数加法中,两个数相加,交换加数的位置,和不变.” 问题3 :你能把有理数加法的交换律用字母来表示吗?由学生回答得出a+b=b+a后,教师说明:〔1〕式子中的字母分别表示任意的一个有理数.(如:既可成表示整数,也可以表示分数;既可以表示正数,也可以表示负数或0)。(2)在同一个式子中,同一个字母表示同一个数.2,有理数加法结合律的学习. (基本步骤同于加法交换律的学习)“加法运算律对所有有理数都成立”目前只能直接给出,让学生举例尝试只起到验证的作用.要让学生举不同的数验证,是为避免学生只由一个例子即得出某种结论.鼓动学生用自己的语言表达所发现的贻论或规律. 让学生感受字母表示数的含义,同时也让学生体会到数学符号语言的简洁性.
讨论交流
解决问题思考:如果四个或四个以上的有理数相加时,还能使用加法交换律与结合律吗?与同伴交流你的看法,并举例子来说明你的观点.例1计算:(1)16+(-25)十24+(-35);(2)(-2.48)+(+4.33)+(-7.52)+(-4.33). 师生共同分析完成,如第(1)题,教师板书:解:(1)原式=16+24+ (-25)十(-35)(此时教师问:依据是什么?) =(16+24)+[(-25)+(-35)〕(依据是什么?) =40+(一60) =20解题后反思:先让学生按从左到右的顺序依次相加,算一算,再让学生说一说,通过这两道题目的计算,你有什么体会?(使用运算律能使运算简便,简化运算的方法有:把正数和负数分别相加,有相反毅的先把相反数相加,能凑整的先凑整等等).例2教科书第24页例4. 这题可这样处理:i1,让学生估计一下总重量是超过标准重量还是不足标准重量.2,让学生思考如何计算,学生能给教科书提供的解法1.即先10袋小麦的总质量,再计算总计超过多千克。此时可组织学生讨论:有没有不同的解法?(此时,如果已有学生提出教材的解法2的思路,则请学生讨论这种解法的合理性。并比较这两种解法。(这是一个有理数应用的例子,这两种解法都应让学生掌握,尤其是解法2更是体现学习有理数加法运算的必要性。注重学习小组内的合作与交流,让每个学生都能从与同伴的交流中获益。鼓励学生在已有知识的基础上对结论做进一步探索,同时也为接下去的应用打下基础。强调算理,让学生在具体运算中体会运算律对简化运算的作用。通过例1的学习让学生明白:加法的交换律与结合律通常是结合起来使用的。此处与书本相对增加了一道题,主要是考虑到存在互为相反数的两数相加的简便性。也是培养学业生能力的需要。
课堂练习教科书第25页练习
本课作业必做题:第31页习题3.1第2、9、10阅读教科书第25页“实验与探究”有兴趣的可完成幻方。
本课教育评注(课堂设计理念,实际教学效果及改进设想) 1,本节课在开始时就先复习小学时
本文共计54331字,当前仅展示3000字,阅读全文请点下方按钮下载>>>
有理数的加法
本文2024-06-05 12:00:59发表“教案学案”栏目。
本文链接:https://www.neimou.com/article/6967855.html