圆柱的表面积练习课
圆柱的表面积练习课(通用5篇)
圆柱的表面积练习课 篇1
第二课时 本册总课时:10-11课时
一、填空
1、 3米 = ( )厘米 60分米 = ( )米
4.5平方分米 = ( )平方厘米 1200平方厘米 = ( )平方米
2、把圆柱体的侧面展开,得到一个( ),它的( )等于圆柱底面周长,( )等于圆柱的高.
6、一个圆柱体,底面周长是94.2厘米,高是25厘米,它的侧面积是( )平方厘米.
7、把一张长8分米,宽5分米的白纸,围成一个圆柱形纸筒,这个纸筒的侧面积是( )平方分米.
二、判断
1、圆柱的侧面展开后一定是长方形. ( )
2、6立方厘米比5平方厘米显然要大. ( )
3、一个物体上、下两个面是相等的圆面,那么,它一定是圆柱形 物体. ( )
4、把两张相同的长方形纸,分别卷成两个形状不同的圆柱筒,并装上两个底面,那么制的圆柱的高、侧面积、表面积一定相等. ( )
三、选择题
1、做一个无盖的圆柱体的水桶,需要的铁皮的面积是( ).
①侧面积+一个底面积
②侧面积+两个底面积
③(侧面积+底面积)2
2、一个圆柱的底面直径是10厘米,高是4分米,它的侧面积是( )平方厘米.
①400 ②12.56 ③125.6 ④1256
3、圆柱的底面直径扩大2倍,高缩小到原来的 ,圆柱的侧面积是( ).
①扩大2倍 ②缩小2倍 ③不变
四、求下面各圆柱体的侧面积.
1、底面周长是6分米,高是3.5分米.
2、底面直径是2.5分米,高是4分米.
五、求下面各圆柱的表面积。
(1)底面半径是2分米,高是7.3分米。
(2)底面周长是18.84米,高是5米。
六、解决问题
一个圆柱形无盖的水桶,底面的直径是0.6米,高是40厘米,做这样一个水桶,需要多少平方米的铁皮?(得数保留整数)
圆柱的表面积练习课 篇2
圆柱的表面积练习课
教学内容:练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径)
二、实际应用
1、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
2、练习二第7题
(1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积)
(2)学生独立完成这道题,集体订正。
3、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
4、练习二第16题
(1)学生读题理解题意后尝试独立解题。
(2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。
5、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。
三、布置作业
练习二第8、10、15、17、18及20题完成在作业本上。
板书:
圆柱的侧面积=底面周长×高
圆柱的表面积=圆柱的侧面积+底面积×2
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(3)圆柱的体积
教学内容:P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。
教学目标:
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力
渗透转化思想,培养学生的自主探索意识。
教学重点:掌握圆柱体积的计算公式。
本文共计10010字,当前仅展示3000字,阅读全文请点下方按钮下载>>>
圆柱的表面积练习课
本文2024-06-05 18:20:30发表“教案学案”栏目。
本文链接:https://www.neimou.com/article/6973656.html