《圆锥的体积》教案
《圆锥的体积》教案(通用12篇)
《圆锥的体积》教案 篇1
目标定位:
a教学
1. 使学生理解、掌握圆锥体积计算公式,能运用公式计算圆锥的体积,解决有关的实际问题。
2. 培养学生观察、操作、推理的能力。
b教学
1. 合理、有效、有序地开展小组合作学习,在“实验操作—合作交流—自主探究”的过程中感悟、推理出圆锥体积计算公式,渗透“转化”的数学思想。
2. 会运用公式计算圆锥的体积,能解决现实生活中类似或相关的问题。
3. 在活动中使学生的观察、比较、分析、归纳、推理等能力得到发展,合作意识、协作精神得以增强,空间观念得到强化。
[
(一)、复习引入、铺垫孕伏
a教学 提问
1. 我们已经学过哪些立体图形体积的计算方法?
2. 我们是用怎样的方法推导圆柱体积计算公式的?
3. 用字母公式表示圆柱的体积。
4. 说一说圆锥体的各部分名称及其特征
板书课题:圆锥的体积
b教学 创设情境,引发兴趣及思考
1. 我们认识了圆锥,谁来向大家介绍一下圆锥的各部分及其特征。什么是圆锥的高?生活中你见过哪些物体的形状是圆锥形的?
2. 如果要把一根底面直径8厘米、高20厘米的圆柱形木料,加工成底面直径是12厘米、高10厘米的圆锥,大家想一想,该怎么办?(多媒体课件演示圆柱形木料旋转切削转化为圆锥的过程,并将圆柱与圆锥重叠,突出“等底等高”)
师提问:①制成的圆锥的底面积与截取圆柱的底面积有什么关系?制成的圆锥的高与截取圆柱的高有什么关系?②大家可以试着猜想、估计一下,制成的圆锥的体积与截取圆柱的体积有什么关系?
同学们的猜想、估计对不对呢?我们一起来研究“圆锥的体积”。(板书课题)
考!
(二)、实验操作、合作交流、自主探究
新知、验证(解释)新知
a教学
1. 圆锥的体积
(1)通过实验,使学生认识圆锥的体积和与它等底等高的圆柱体积的关系。
①每组都准备好等底等高的圆柱形和圆锥形容器,沙子。②将圆锥形容器盛满沙子,再将沙子倒入和它等底等高的圆柱形容器内,数一数一共倒了几次将圆柱?稳萜鞯孤?"弁ü?笛槿醚伎迹涸沧兜奶寤?退?鹊椎雀叩脑仓?寤溆惺裁垂叵担?
(2)根据等底等高圆柱和圆锥体积的关系,引导学生得出圆锥体积计算公式:v=1/3sh(板书)
(3)引导学生思考:圆柱体积计算公式和圆锥体积计算公式有什么相同之处?为什么圆锥的体积计算公式用它的底面积乘以高后还要乘以1/3?
2.教学例1:一个圆锥形铅锤,底面积是28.26平方厘米,高是5厘米,这个铅锤的体积是多少?
(1)学生读题后找出已知条件,说出计算公式。
(2)列式解答
(3)提问:①求圆锥的体积必须知道哪两个条件?②如果不直接告诉底面积,还可以知道哪些已知条件?怎样进行计算?
b教学
1. 出示圆锥:什么是物体的体积?什么是圆锥的体积?(圆锥所占空间的大小叫做圆锥的体积)
根据以前的知识要求出这个圆锥的体积有什么办法?(把圆锥浸没在装有水的长方体、正方体或圆柱体容器中,看水面上升的高度,计算出上升的那一部分水的体积,就是这个圆锥的体积)(把圆锥看成一个容器,倒入水,再把水倒入量杯中,水的体积就是圆锥的体积)......
师:这些想法都很好,但有一定的局限性,我们要找一种计算圆锥体积的方法。想一想能不能找到圆锥与以前学过的某种立体图形的体积之间的联系来发现圆锥体积的计算方法。
2.讨论:(1)我们以前学过哪几种立体图形?拿哪种立体图形来帮助研究圆锥的体积更合适呢?为什么?(因为圆锥有一个圆形底面和一个侧面是曲面,圆柱也有一个圆形的底面和一个侧面也是曲面,用圆柱帮助研究圆锥更方便)(2)出示4个圆柱、1个圆锥。师:这里有4个圆柱,选哪一个来帮助研究圆锥的体积呢?演示比较:圆柱与圆锥分等底等高,等底不等高,等高不等底,既不等底又不等高四种情况。(侧? 赜谝?佳〉鹊椎雀叩脑仓?朐沧兜难芯恳员阌诜⑾止媛桑3)分组提供小组合作实验操作的材料(每组4个圆柱,1个圆锥,水、沙子、大米及实验操作记录表)想一想,利用这些材料,你能设计一个实验来研究圆锥的体积吗?
第——小组 实验操作记录表 实验记录人:
实验项目及内容
圆锥盛满(水或……)向圆柱倒三次后的情况
实验结论
等底等高
等底不等高
等高不等底
既不等底也不等高
3.动手实验:四人一组进行操作,注意观察实验过程(教师讲清实验操作要求、步骤),小组成员详细记录实验情况,全组成员共同讨论、分析,得出本组实验结论。
4.《圆锥的体积》教案
本文2024-06-05 18:21:54发表“教案学案”栏目。
本文链接:https://www.neimou.com/article/6973678.html